The Five Femtosecond Time Step Barrier

نویسندگان

  • Robert D. Skeel
  • Jesús A. Izaguirre
چکیده

Simulation of the dynamics of biomolecules requires the use of a time step in the range 0.5–1 fs to obtain acceptable accuracy. Nevertheless, the bulk of the CPU time is spent computing interactions, such as those due to long-range electrostatics, which vary hardly at all from one time step to the next. This unnecessary computation is dramatically reduced with the use of multiple time stepping methods, such as the Verlet-I/r-RESPA method, which is based on approximating “slow” forces as widely separated impulses. Indeed, numerical experiments show that time steps of 4 fs are possible for these slow forces but unfortunately also show that a long time step of 5 fs results in a dramatic energy drift. Moreover, this is less pronounced if one uses a yet larger long time step! The cause of the problem can be explained by exact analysis of a simple two degree-of-freedom linear problem, which predicts numerical instability if the time step is just less than half the period of the fastest normal mode. To overcome this, a modification of the impulsive Verlet-I/r-RESPA method is proposed, called the mollified impulse method. The idea is that one modifies the slow part of the potential energy so that it is evaluated at “time averaged” values of the positions, and one uses the gradient of this modified potential for the slow part of the force. Various versions of the algorithm are implemented for water and numerical results are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The study of propagation of a femtosecond laser pulse in the breast tissue

In this paper, the evaluation of time profile of a femtosecond pulse laser propagated through biological tissues is studied. The majority of the biological tissues with a high scattering anisotropy must be considered as turbid media, that their optical responses are complicated. To study the propagation of ultra-short pulse in turbid media, the diffuse equation is used. In this study, the analy...

متن کامل

Femtosecond dynamics coupled to chemical barrier crossing in a Born-Oppenheimer enzyme.

Contributions of fast (femtosecond) dynamic motion to barrier crossing at enzyme catalytic sites is in dispute. Human purine nucleoside phosphorylase (PNP) forms a ribocation-like transition state in the phosphorolysis of purine nucleosides and fast protein motions have been proposed to participate in barrier crossing. In the present study, (13)C-, (15)N-, (2)H-labeled human PNP (heavy PNP) was...

متن کامل

Relativistic Nonlinear Thomson Scattering: Toward Intense Attosecond Pulse

Over many millennia of human history, mankind has been interested in how events change in time, namely their dynamics. However, the time resolution of recording individual steps has been limited to direct sensory perception such as the eye’s ability (0.1 sec. or so) to recognize the motion, until 1800 AD when the technical revolution occurred following the industrial revolution. A famous motion...

متن کامل

Square Lattice Elliptical- Core Photonic Crystal Fiber Soliton-Effect Compressor at 1550nm

 In this paper, we investigate the evolution of supercontinuum and femtosecond optical pulses generation through square lattice elliptical-core photonic crystal fiber (PCF) at 1550 nm by using both full-vector multipole method (M.P.M) and novel concrete algorithms: symmetric  split-step Fourier (SSF) and  fourth order Runge Kutta (RK4) which is an accurate method to solve the general  nonlinear...

متن کامل

Ab initio molecular dynamics and time-resolved photoelectron spectroscopy of electronically excited uracil and thymine.

The reaction dynamics of excited electronic states in nucleic acid bases is a key process in DNA photodamage. Recent ultrafast spectroscopy experiments have shown multicomponent decays of excited uracil and thymine, tentatively assigned to nonadiabatic transitions involving multiple electronic states. Using both quantum chemistry and first principles quantum molecular dynamics methods we show t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998